
Two Logarithmic Approximation Algorithms for Multicut1

• In this lecture we consider the multicut problem which generalizes the multiway cut problem. As
usual, we are given an undirected graph G = (V,E) with non-negative costs c(e) on edges. We are
also given k pairs of vertices {si, ti}i=1,...,k. The objective is to find a subset F ⊆ E of minimum
cost such that in G \ F , si is disconnected from ti. Note that si could remain connected to tj . We
describe two O(log k)-approximation algorithms for this problem. They are both based on the same
distance-based LP relaxation.

lp := min
∑
e∈E

c(e)xe (Multicut LP)

duv ≤ xe, ∀e ∈ E, e = (u, v) (1)

duw ≤ duv + dvw, ∀i ∈ F, ∀{u, v, w} ⊆ V (2)

dvv = 0, ∀v ∈ V (3)

dsiti ≥ 1, ∀1 ≤ i ≤ k (4)

• Randomized Rounding Algorithm. The first rounding algorithm we see is a generalization of the
multiway cut algorithm. We select a random radius r ∈ (0, 0.5) uniformly at random. Then, we
wish to go over each terminal si and “carve out” the region of radius r around Si. The twist in this
algorithm is this: go over the terminals also randomly.

1: procedure RANDOMIZED MULTICUT(G = (V,E), c(e) ≥ 0 on edges,{si, ti}i=1,...,k ):
2: Solve (Multicut LP) to obtain xe’s and duv’s.
3: Randomly sample r ∈ (0, 0.5) uniformly.
4: Randomly sample σ, a permutation of {1, . . . , k}.
5: Let Si := {v : dsiv ≤ r} and let E[Si] := {(u, v) : u, v ∈ Si}.
6: For 1 ≤ i ≤ k: add ∂Sσ(i) \

⋃
j<iE[Sσ(j)] to F .

7: return F .

• Analysis. First let us observe F is a valid multicut.

Claim 1. F separates all si, ti pairs.

Proof. By design, observe that for any i, the subset Si doesn’t contain both sj and tj for any j. Now,
note that since ∂Sσ(i) \

⋃
j<iE[Sσ(j)] is added to F , in G\F the vertex sσ(i) is disconnected from all

vertices outside Sσ(i), except maybe those in Sσ(j) : j < i which contained the vertex sσ(i). By the
observation above, such Sσ(j)’s don’t contain tσ(i). Therefore, sσ(i) is disconnected from tσ(i).
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Theorem 1. The expected cost of the edges F returned by RANDOMIZED MULTICUT is≤ 2Hklp
where Hk is the kth Harmonic number.

Proof. Fix an edge (u, v). The proof of the theorem follows if we prove Pr[(u, v) ∈ F ] ≤ 2Hk · duv.
Note that the probability is now both over our choice of r and the random permutation of the terminals.

Define Ei(u, v) to be the event that exactly one of u or v lies in Si. That is, min(dsiu, dsiv) ≤ r <
max(dsiu, dsiv). Define E ′i(u, v) to be the event that both u and v lie in Si, that is r < min(dsiu, dsiv).
Now, note that the edge (u, v) appears in the solutionF if and only if there is some i such that Ei occurs
and for all j < i, E ′j doesn’t occur. That is,

Pr[(u, v) ∈ F ] = Pr
σ,r

∃i : Eσ(i)(u, v) and
∧
j<i

E ′σ(j)(u, v)

 (5)

Fix an i between 1 and k. Without loss of generality, assume dsσ(i)u ≤ dsσ(i)v. Note that
∧
j<i E ′σ(j)(u, v)

occurs only if r < dsσ(j)v for all j < i. But Eσ(i)(u, v) occurs only if r ≥ d(sσ(i), u). So, we can
upper bound the probability in the RHS above as

Pr
σ,r

Eσ(i)(u, v) and
∧
j:<i

E ′σ(j)(u, v)

 ≤ Pr
σ,r

r ∈ [dsσ(i)u, dsσ(i)v] and
∧
j<i

{
dsσ(i)u < dsσ(j)u

}
Note that the two events in the RHS above are independent: the first depends only on r, the second
depends only on σ, and they were chosen independently. So, by union bound we get that the RHS of
(5) is at most

k∑
i=1

Pr
r

[
r ∈ [dsσ(i)u, dsσ(i)v

]
︸ ︷︷ ︸

call this π1(i)

·Pr
σ

∧
j<i

{
dsσ(i)u < dsσ(j)u

}
︸ ︷︷ ︸

call this π2(i)

We know π1(i) = Prr

[
r ∈ [dsσ(i)u, dsσ(i)v

]
≤ 2duv ≤ 2xe. This is similar to the mincut argument;

r is chosen randomly from an interval of length 0.5 and the length of [dsσ(i)u, dsσ(i)v], by (2) is at most
duv ≤ xe.
To evaluate π2(i), consider the k distances dsiu from u to each si. What π2 is asking is to figure out
the probability that in a random permutation of these k distances, the ith distance is the minimum
among the first i. This is precisely 1/i. Therefore, the probability in the RHS of (5) is at most∑k

i=1
2xe
i = 2Hk · xe. This completes the proof.

• A Region Growing Algorithm. We now describe another algorithm for the multicut problem. This
algorithm uses a technique called region growing which will be useful for the next cut-problem we
look at. It also has applications in other related problems.

We start with a couple of definitions. Let’s fix a solution to (Multicut LP), and a parameter r ∈ [0, 0.5).
For a subset U ⊆ V , define Si(r;U) := {u ∈ U : dsiu ≤ r}. Define ∂Si(r;U) := {(u, v) ∈ E :
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u ∈ Si(r;U), v ∈ U \ Si(r)}, and define E[Si(r;U)] = {(u, v) ∈ E : u, v ∈ Si(r;U)}. These
definitions are similar to the ones used above, except we pass on an extra parameter U .

Next, define the “volume” of a ball of radius r around the center si.

Voli(r;U) :=
lp

k
+

∑
(u,v)∈E[Si(r;U)]

c(u, v)duv +
∑

(u,v)∈∂Si(r;U)

c(u, v) · (r − dsiu) (LP volume)

It’s best to think of this volume as the set Si(r;U)’s contribution to the LP objective. There are
three parts above. The first, lp/k is an initialization which is kept for a technical reason that you
will make sense soon. The second summation is the contribution to the LP objective due to edges
complete present inside Si(r;U). The third is considering edges in ∂Si(r;U) and sharing some of
the LP contribution on these edges and attributing it to i. Note that for all such edges, r − dsiu ≤
dsiv − dsiu ≤ duv where the first inequality follows from the fact that v ∈ U \ Si(r), and the second
is triangle inequality.

The following observation follows from the definition.

Claim 2. Fix any r ∈ (0, 0.5) and any i and any U ⊆ V . The set Si(r;U) cannot contain sj and
tj for any 1 ≤ j ≤ k.

Proof. For any two vertices u, v ∈ Si(r;U), triangle inequality dictates duv ≤ dusi + dvsi ≤ 2r < 1.
Since dsjtj ≥ 1, they both can’t be in the same Si(r;U).

This suggests the following algorithm. Figure out certain radii ri’s and peel out the “region of radius
r” around the terminal and delete. The boundaries of these “chunks” form a valid multicut.

1: procedure REGION GROWING MULTICUT(G = (V,E), c(e) ≥ 0,{si, ti}i=1,...,k ):
2: Solve (Multicut LP) to obtain xe’s and duv’s.
3: U ← V ; B ← ∅; I ← ∅. . U is the set of alive vertices; B is collection of balls.
4: for 1 ≤ i ≤ k do:
5: If si ∈ Sj(rj ;U) for j < i, skip this for loop.

6: Otherwise, find ri ∈ [0, 0.5) which minimizes
∑
e∈∂Si(ri;U) c(e)

Voli(ri;U) .
7: . There are at most n different r’s such that Si(r;U) are distinct
8: U ← U \ Si(ri;U)
9: Add Bi := Si(ri;U) to B.

10: return F ←
⋃
B∈B ∂B.

• Analysis.

Theorem 2. REGION GROWING MULTICUT returns a valid multicut F with cost
∑

e∈F c(e) ≤
4 ln(k + 1)lp.
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Observe, by definition, the sets B ∈ B are disjoint sets. Furthermore, no B ∈ B contains both sj and
tj for any 1 ≤ j ≤ k; this follows from Claim 2. Therefore, F is a valid multicut. Furthermore, each
B ∈ B is Si(ri;Ui) for some subset Ui ⊆ V which was the alive subset of vertices when this ball was
being added. Let I ⊆ [k] be the i’s present in this enumeration; these are the si’s not “gobbled” by
other Sj(rj ;U)’s.

Claim 3.
∑

i∈I Voli(ri;Ui) ≤ 2lp.

Proof. Note that the sum of the volumes is at most

lp+
∑

(u,v)∈∪i∈IE[Si(ri;Ui)]

c(u, v)duv +
∑
i∈I

∑
(u,v)∈∂Si(ri;Ui)

c(u, v)d(u, v)

Now note that any edge (u, v) ∈ E appears in at most one E[Si(ri;Ui)] or ∂Si(ri;Ui): it is the first
i for which one of the end points enters Si(ri;Ui). Therefore, the last two summations add up to at
most

∑
(u,v)∈E c(u, v)duv ≤

∑
e∈E cexe = lp.

The heart of the analysis is in the following lemma.

Lemma 1. (Region growing lemma) Fix any subset U ⊆ V and any si ∈ U . There exists a
ri ∈ [0, 1/2) such that ∑

(u,v)∈∂Si(r;U)

c(u, v) ≤ 2 ln(k + 1) · Voli(ri;U)

Proof. As defined, note that Voli(r;U) is a continuous, piece-wise linear function of r, and the crucial
observation is that

dVoli(r;U)

dr
=

∑
(u,v)∈∂Si(r;U)

c(u, v)

This means that if
∑

(u,v)∈∂Si(r;U) c(u, v) is large, in particular larger than 2 ln(k + 1)Volr(ri;U),
then the rate of increase of the volume is rather large. On the other hand, even at r = 0.5, the volume
can be at most the lp. And it began at lp/k (this is the technical reason to have this first term in the
definition), and so the rate can’t be large throughout, proving the lemma.

A little more formally, for the sake of contradiction, assume that the lemma’s assertion is false. Then,
we get the partial differential inequality

∀r ∈ [0, 0.5),
dVoli(r;U)

dr
> 2 ln(2k) · Voli(r;U) ⇒ dVoli(r;U)

Voli(r;U)
> 2 ln(k + 1) · dr

Therefore, if we integrate with r going from 0 to 0.5,∫ Voli(0.5)

Voli(0)

dVoli(r)

Vol(r)
> 2 ln(2k)

∫ 1/2

0
dr

The LHS integrates to ln
(
Voli(0.5;U)
Voli(0;U)

)
. By design, Voli(0;U) = lp/k. And, Voli(0.5) ≤ lp(1 + 1

k ).
Therefore, the LHS is at most ln(k+1). The RHS, however, integrates to ln(k+1), giving the desired
contradiction.
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In the algorithm, we pick ri’s which minimize the ration of c(∂Si(ri;U))/Voli(ri;U), and so this
ratio is at most 2 ln(2k). Therefore, the cost of the edges deleted is at most

c(F ) =
∑
B∈B

c(∂B) =
∑
i∈I

c(∂Si(ri;Ui)) ≤ 2 ln(k + 1) ·
∑
i∈I

Voli(ri;Ui) ≤︸︷︷︸
Claim 3

4 ln(k + 1)lp

completing the proof of Theorem 2.

Notes

The region growing algorithm is from the paper [4] by Garg, Vazirani, and Yannakakis and was the first
O(log k)-approximation for the multicut problem. The technique of region growing itself is inspried by the
seminal paper [5] by Leighton and Rao on the sparsest cut problem which we will discuss in a subsequent
lecture. The randomized rounding algorithm is from the paper [2] by Calinescu, Karloff, and Rabani which
followed their paper [1] on the multiway cut problem. On the other hand, it is possible there may not be any
constant factor approximations for the multicut problem: the paper [3] by Chawla, Krauthgamer, Kumar,
Rabani, and Sivakumar shows that it is UGC-hard to obtain any constant factor approximation.
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